特集
脳を育む

母性行動の神経生物学的基盤

黒田公美

KEY WORDS
母性行動
遺伝子変異
マウスモデル
視床前葉
Fos
プロラクチン

SUMMARY
母性行動の神経・認知的基盤に関する研究が進展し、母性行動の神経・遺伝的基盤解明が期待されている。母性行動の発現には、神経系の整合性が重要であることが示唆されている。特に、視床前葉では母性行動に関与する神経回路が豊富に存在し、その活動が母性行動発現に深く関与していると考えられている。

1. 母性行動の神経・遺伝的基盤

母性行動は、遺伝的要因と神経回路の相互作用が深く関与している。母性行動発現には、視床前葉で発現する神経回路が関与していることが示唆されている。遺伝子変異モデルを使用して、母性行動発現に重要な役割を果たす遺伝子の役割を解明することが重要である。

2. 母性行動の神経・遺伝的基盤

母性行動発現には、遺伝的、神経的要因が深く関与している。遺伝子変異モデルを用いて、母性行動発現に重要な役割を果たす遺伝子の役割を解明することが重要である。特に、視床前葉で発現する神経回路が母性行動発現に深く関与していることが示唆されている。
plagia in selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.

In the case of high-order selective area and was indicated that birth order could influence the synaptic formation in the hippocampus. Moreover, NE concentration in the hippocampus was lower in non-selective area and was indicated that birth order could influence the synaptic formation in the hippocampus.